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Abstract

We introduce and demonstrate a new ap-
proach to inference in expressive probabilis-
tic programming languages based on particle
Markov chain Monte Carlo. Our approach
is simple to implement and easy to paral-
lelize. It applies to Turing-complete proba-
bilistic programming languages and supports
accurate inference in models that make use
of complex control flow, including stochas-
tic recursion. It also includes primitives
from Bayesian nonparametric statistics. Our
experiments show that this approach can
be more efficient than previously introduced
single-site Metropolis-Hastings methods.

1 Introduction

Probabilistic programming differs substantially from
traditional programming. In particular, probabilistic
programs are written with parts not fixed in advance
that instead take values generated at runtime by ran-
dom sampling procedures. Inference in probabilistic
programming characterizes the conditional distribu-
tion of such variables given observed data assumed
to have been generated by executing the probabilistic
program. Exploring the joint distribution over pro-
gram execution traces that could have generated the
observed data using Markov chain sampling techniques
is one way to produce such a characterization.

We propose a novel combination of ideas from prob-
abilistic programming [3] and particle Markov chain
Monte Carlo (PMCMC) [1] that yields a new scheme
for exploring and characterizing the set of probable ex-
ecution traces. As our approach is based on repeated
simulation of the probabilistic program, it is easy to
implement and parallelize. We show that our approach
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supports accurate inference in models that make use of
complex control flow, including stochastic recursion, as
well as primitives from nonparametric Bayesian statis-
tics. Our experiments also show that this approach can
be more efficient than previously introduced single-site
Metropolis-Hastings (MH) samplers [12].

2 Preliminaries

Our probabilistic programming system, Anglican1, in-
terprets code with syntax and semantics drawn from
the modeling language from Venture2:

[assume symbol <expr >]
[observe <expr > <const >]
[predict <expr >]

where assume, observe, and predict are directives, each
<expr> is a Scheme/Lisp-syntax expression, symbol is
a not-previously-assumed symbol, and <const> is a
constant-valued deterministic expression.

Semantically assume’s are (random) variable (genera-
tive) declarations, observe’s condition the distribution
of assume’d variables by (noisily) constraining the out-
put values of (random) functions of assume’d variables
to match observed data, and predict’s are “watches”
which report on (via print out) the values of variables
in program traces as they are explored. In Anglican,
probabilistic program interpretation is taken to be a
forever-continuing exploration of the space of execu-
tion traces that obey (where hard) or reflect (where
soft) the observe’d constraints in order to report func-
tions (via predict’s) of the conditional distribution of
subsets of the assume’d variables.

Like Scheme/Lisp, Anglican eagerly and exchange-
ably recursively “evaluates” subexpressions, for in-
stance of <expr> = (<proc> <arg> . . . <arg>), before
“applying” the procedure (which may be a random
procedure or special form) resulting from evaluating
the first expression <proc> to the value of its argu-
ments. Anglican counts applications, reported as a

1http://www.robots.ox.ac.uk/~fwood/anglican/
2http://probcomp.csail.mit.edu/venture/

http://www.robots.ox.ac.uk/~fwood/anglican/
http://probcomp.csail.mit.edu/venture/
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computational cost proxy in Sec 4. Anglican sup-
ports several special forms, notably (lambda (<arg>

. . . <arg>) <body>)) which allows creation of new pro-
cedures and (if <pred> <cons> <alt>) which supplies
branching control flow; also begin, let, define, quote,
and cond. Anglican exposes eval and apply. Built-in
deterministic procedures include list, car, cdr, cons,
mem, etc., and arithmetic procedures +, -, \, etc.

Built-in “random procedures” include poisson,
dirichlet-multinomial, gamma, flip, discrete,
categorical, normal, beta-bernoulli, polya-urn-mem,
etc. Applying a random procedure generates a
sample. Latent variables are specified in Anglican by
assume’ing them to take the value of expressions that
include random procedures. In the current version
of Anglican the outer <proc> in all observe <expr>’s
must be a built-in random procedure for which the
likelihood of output given arguments can be computed
exactly.

3 Inference

An execution trace is the sequence of memory states
resulting from the sequence of function applications
performed during the interpretation of a program. In
probabilistic programming systems like Anglican any
variable may be declared as being the output of a
random procedure. Such variables can take different
values in independent interpretations of the program.
This leads to a “many-worlds” computational trace
tree in which, at interpretation time, there is a branch
at every random procedure application.

To define the probability of a single execution trace,
first fix an ordering of the exchangeable lines of
the program and index the observe lines by n. Let
p(yn|θtn ,xn) be the likelihood of the observe’d output
yn where tn is a random procedure type (i.e. gamma,
poisson, etc.), θtn is its argument (possibly multi-
dimensional), and xn is the set of all random procedure
application results computed before the likelihood of
observation yn is evaluated. Both the type tn and the
parameter θtn can be functions of any in-scope sub-
set of xn. We can then define the probability of an
execution trace to be

p̃(y,x) ≡
N∏

n=1

p(yn|θtn ,xn)p̃(xn|xn−1) (1)

where y is the set of all observe’d quantities, x is the
set of all random procedure application results, and ∼
marks distributions which we can only sample.

The number and type of all random procedure appli-
cations performed before the nth observe may vary in

one program trace to the next. We define the proba-
bility of the sequence of their outputs xn to be

p̃(xn|xn−1) (2)

=

|xn\xn−1|∏
k=1

p(xn,k|θtn,k
, xn,1:(k−1),xn−1).

Here x0 = ∅ is the empty set and xn,j:k are the j
to kth values generated by random procedure applica-
tions in the trace up to observation likelihood compu-
tation n. The cardinality of the set xn \xn−1, notated
| · |, arises implicitly as the total number of random
procedure applications in a given execution trace. As
before, θtn,k

are the arguments to, and tn,k the type
of, the (n, k)th random procedure – both of which may
be functions of subsets of in-scope subsets of variables
xn:1,(k−1)∪xn−1. Note that xn−1 ⊆ xn. Also note that
variable referencing defines a directed conditional de-
pendency structure for the probability model encoded
by the program, i.e. xn,k need not (and often cannot
due to variable scoping) depend on the outputs of all
previous random procedure applications.

We use sampling to explore and characterize the distri-
bution p̃(x|y) ∝ p̃(y,x), i.e. the distribution of all ran-
dom procedure outputs that lead to different program
execution traces, conditioned on observed data. Re-
lated approaches include rejection sampling [3], single-
site MH [3, 12].

All members of the set of all directed probabilistic
models with fixed-structure joint distributions can be
expressed as probabilistic programs that “unroll” in all
possible execution traces into an equivalent joint dis-
tribution. As Church-like probabilistic programming
frameworks, Anglican included, support recursive pro-
cedures and branching on the values returned by ran-
dom procedures, the corresponding set of models is
a superset of the set of all directed graphical mod-
els. Other related efforts eschew Turing-completeness
and operate on a restricted set of models [11, 9, 7, 10]
where inference techniques other than sampling can
more readily be employed.

3.1 A New Approach

Towards our new approach to probabilistic program-
ming inference, first consider a standard sequential
Monte Carlo (SMC) recursion for sampling from a se-
quence of intermediate distributions that terminates
in p̃(x|y) ∝ p̃(y,x) where x and y are as before,
and the joint is given by Eq.’s 1 and 2. Note that a
sequence of intermediate approximating distributions
can be constructed from any syntactically allowed re-
ordering of

p̃(x1)p̃(x2|x1) · · · p̃(xn|xn−1)p(y1|x1) · · · p(yn|xn).



Frank Wood, Jan Willem van de Meent, Vikash Mansinghka

Assume that observation likelihoods are pushed as far
left in this sequence of approximating distributions as
possible; however it is clear how to proceed if this is
not the case. Assume we have 1 ≤ ` ≤ L unweighted

samples x
(`)
n−1 ∼ p̃(xn−1|y1:(n−1)) and that from these

we will produce approximate samples from p̃(xn|y1:n).
To do so via importance sampling we may choose
any proposal distribution q(xn|xn−1, y1:n). Sampling
from this and weighting by the discrepancy between
it and the distribution of interest, p̃(xn, y1:n), we ar-

rive at samples with unnormalized weights w̃
(`)
n =

p̃(x̂
(`)
n , y1:n)/q(x̂

(`)
n |x(`)

n−1, y1:n). Here hats notate the
difference between weighted and unweighted samples,
those with being weighted and vice versa.

This expression simplifies substantially in the “propose
from the prior” case where the proposal distribution
is defined to be the continued interpretation of the
program from observation likelihood evaluation n − 1

to n, i.e. q(x̂
(`)
n |x(`)

n−1, y1:n) ≡ p(x̂(`)
n |x(`)

n−1). In this case

the weight simplifies to w̃
(`)
n = p(yn|x̂(`)

n ). Sampling

an unweighted particle set x
(`)
n ∼

∑
` w

(`)
n δ

x̂
(`)
n

, where

w
(`)
n = w̃

(`)
n /

∑
j w̃

(j)
n , completely describes SMC for

probabilistic program inference.

The SMC procedure described is, to first approxima-
tion, the inner loop of PMCMC. It corresponds to a
procedure whereby the probabilistic program is inter-
preted in parallel (possibly each particle in its own
thread or process) between observation likelihood cal-
culations. Unfortunately, SMC with a finite set of par-
ticles is not itself directly viable for probabilistic pro-
gramming inference for all the familiar reasons: parti-
cle degeneracy, inefficiency in models with global, con-
tinuous parameters, etc.

PMCMC, on the other hand, is directly viable. PM-
CMC for probabilistic programming inference is a MH
algorithm for exploring the space of execution traces
that uses SMC proposals internally. This, unlike prior
art, allows sampling of execution traces with changes
to potentially many more than one variable at a time.
The particular variant of PMCMC we discuss in this
paper is Particle-Gibbs (PG) although we have devel-
oped engines based on other PMCMC variants includ-
ing particle independent Metropolis Hastings and con-
ditional sequential Monte Carlo too. PG works by it-
eratively re-running SMC, with, on all but the first
sweep, reinsertion of a “retained” particle trace into
the set of particles at every stage of SMC. PG is the-
oretically justified as an MH transition operator that,
like the Gibbs operator, always accepts [1, 4]. In this
paper we describe PMCMC for probabilistic program-
ming inference algorithmically in Alg.1 and experimen-
tally demonstrate its relative efficacy for probabilistic
programming inference.

In Alg. 1 the function r(N,S) stands for multi-
nomial sample N items from the set of pairs S =
{{w1, θ1}, . . . , {wM , θM}}, where each element of S
consists of an unnormalized weight wm and interpreter
memory states θm. For each sample value θm returned,
the function r also returns the original, corresponding
unnormalized weight wm. This kind of weight book-
keeping retains, for all particles, the results of the out-
ermost observe likelihood function applications so that
the unnormalized weights are available in the retained
particle {w∗,x∗} in the next sweep.

Algorithm 1 PMCMC for Prob. Prog. Inference

L← number of particles
S ← number of sweeps

{w̃(`)
N ,x

(`)
N } ← Run SMC

for s < S do
{·,x∗N} ← r(1, {1/L,x(`)

N })
{·,x(`)

0 } ← initialize L− 1 interpreters
for d ∈ ordered lines of program do
for ` < L− 1 do

x̄
(`)
n−1 ← fork(x

(`)
n−1)

end for
if directive(d) == “assume” then
for ` < L− 1 do
x̄
(`)
n ← interpret(d, x̄

(`)
n−1)

end for
{x(`)

n } ← {x̄(`)
n } ∪ x∗n

else if directive(d) == “predict” then
for ` < L− 1 do

interpret(d, x̄
(`)
n−1)

end for
interpret(d,x∗n−1)

else if directive(d) == “observe” then
for ` < L− 1 do
{w̄(`)

n , x̄
(`)
n } ← interpret(d, x̄

(`)
n−1)

end for
T ← r(L− 1, {w̄(`)

n , x̄
(`)
n } ∪ {w̃∗n,x∗n})

{w̃(`)
n ,x

(`)
n } ← T ∪ {w̃∗n,x∗n}

end if
end for

end for

In Alg. 1 “Run SMC” means running one sweep of
the s loop with L particles and no retained particle,
d is a program line, and fork(·) means to copy the
entire interpreter memory datastructure (efficient im-
plementations have characteristics similar to POSIX
fork() [8]). The command interpret(d, ·) means ex-
ecute line d in the given interpreter. Only when in-
terpreting an observe must the interpreter return a
weight, that being result of the outermost apply of
the observe statement. Bars indicate temporary data
structures, not averages. All sets are ordered with
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unions implemented by append operations.

Note that there are more efficient PMCMC algorithms
for probabilistic programming inference. In particular,
there is no reason to fork unless an observe has just
been interpreted. Alg. 1 is presented in this form for
expositional purposes.

3.2 Random Database

We refer to the MH approach to sampling over
the space of all traces proposed in [12] as “random
database” (RDB). A RDB sampler is a MH sampler
where a single variable drawn in the course of a partic-
ular interpretation of a probabilistic program is modi-
fied via a standard MH proposal, and this modification
is accepted by comparing the value of the joint distri-
bution of old and new program traces. For complete-
ness we review RDB here, noting a subtle correction to
the acceptance ratio proposed in the original reference
which is proper for a larger family of models.

The RDB sampler employs a data structure that holds
all random variables x associated with an execution
trace, along with the parameters and log probability
of each draw. Note that interpretation of a program
is deterministic conditioned on x. A new proposal
trace is initialized by picking a single variable xm,j

from the |x| random draws, and resampling its value
using a reversible kernel κ(x′m,j |xm,j). Starting from
this initialization, the program is rerun to generate a
new set of variables x′ that correspond to a new valid
execution trace. In each instance where the random
procedure type remains the same, we reuse the exist-
ing value from the set x, rescoring its log probability
conditioned on the preceding variables where neces-
sary. When the random procedure type has changed,
or a new random variable is encountered, its value is
sampled in the usual manner. Finally, we compute
the probability p(y|x′) by rescoring each observe as
needed, and accept with probability

min

(
1,
p(y|x′)p(x′)q(x|x′)
p(y|x)p(x)q(x′|x)

)
. (3)

In order to calculate the ratio of the proposal proba-
bilities q(x′|x) and q(x|x′), we need to account for the
variables that were resampled in the course of con-
structing the proposal, as well as the fact that the
sets x′ and x may have different cardinalities |x′| and
|x|. We will use the (slightly imprecise) notation x′\x
to refer to the set of variables that were resampled,
and let x′ ∩ x represent the set of variables common
to both execution traces. The proposal probability is
now given by

q(x′|x) =
κ(x′m,j |xm,j)

|x|
p(x′\x | x′ ∩ x)

p(x′m,j |x′ ∩ x)
. (4)

In our implementation, the initialization x′m,j is sim-
ply resampled conditioned on the preceding variables,
such that κ(x′m,j |xm,j) = p(x′m,j |x′ ∩ x). The reverse
proposal density can now be expressed in a similar
fashion in terms of x\x′ and x ∩ x′ = x′ ∩ x, allowing
the full acceptance probability to be written as

p(y|x′) p(x′) |x| p(x\x′ | x ∩ x′)

p(y|x) p(x) |x′| p(x′\x | x′ ∩ x)
. (5)

4 Testing

Programming probabilistic program interpreters is a
non-trivial software development effort, involving both
the correct implementation of an interpreter and the
correct implementation of a general purpose sampler.
The methodology we employ to ensure correctness of
both involves three levels of testing; 1) unit tests, 2)
measure tests, and 3) conditional measure tests.

4.1 Unit and Measure Tests

In the context of probabilistic programming, unit test-
ing includes verifying that the interpreter correctly
interprets a comprehensive set of small deterministic
programs. Measure testing involves interpreting short
revealing programs consisting of assume and predict

statements (producing a sequence of ancestral, uncon-
ditioned samples, i.e. no observe’s). Interpreter out-
put is tested relative to ground truth, where ground
truth is computed via exhaustive enumeration, ana-
lytic derivation, or some combination, and always in
a different, well-tested independent computational sys-
tem like Matlab. Various comparisons of the empirical
distribution constructed from the accumulating stream
of output predicts’s and ground truth are computed;
Kulback-Leibler (KL) divergences for discrete sample
spaces and Kolmogorov Smirnov (KS) test statistics
for continuous sample spaces. While it is possible
to construct distribution equality hypothesis tests for
some combinations of test statistic and program we
generally are content to accept interpreters for which
there is clear evidence of convergence towards zero of
all test statistics for all measure tests. Anglican passed
all unit and measure tests.

4.2 Conditional Measure Tests

Measure tests involving conditioning provide addi-
tional information beyond that provided by measure
and unit tests. Conditioning involves endowing pro-
grams with observe statements which constrain or
weight the set of possible execution traces. Interpret-
ing observe statements engages the full inference ma-
chinery. Conditional measure test performance is mea-
sured in the same way as measure test performance.
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(a) HMM (b) DP Mixture

(c) Branching (d) Marsaglia

Figure 1: Comparative conditional measure test performance: PMCMC with 100 particles vs. RDB.

They are also how we compare different probabilistic
programming inference engines.

5 Inference Engine Comparison

We compare PMCMC to RDB measuring convergence
rates for an illustrative set of conditional measure test
programs. Results from four such tests are shown in

Figure 1 where the same program is interpreted using
both inference engines. PMCMC is found to converge
faster for conditional measure test programs that cor-
respond to expressive probabilistic graphical models
with rich conditional dependencies.

The four test programs are: 1) a program that corre-
sponds to state estimation in a hidden Markov model
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(HMM) with continuous observations (HMM: Pro-
gram 5.1, Figure 1a), 2) a program that corresponds
to learning an uncollapsed Dirichlet process (DP) mix-
ture of Gaussians with fixed hyperparameters (DP
Mixture: Program 5.2, Figure 1b), 3) a multimodal
branching with deterministic recursion program that
cannot be represented as a graphical model in which all
possible execution paths can be enumerated (Branch-
ing: Program 5.3, Figure 1c), and 4) a program that
corresponds to inferring the mean of a univariate nor-
mal generated via an Anglican-coded Marsaglia [6]
rejection-sampling algorithm that halts with probabil-
ity one and generates an unknown number of inter-
nal random variables (Marsaglia: Program 5.4, Fig-
ure 1d). We refer to 1) and 2) as “expressive” mod-
els because they have complex conditional dependency
structures and 3) and 4) as simple models because the
programs encode models with very few free parame-
ters. 1) and 2) illustrate our claims; 3) and 4) are in-
cluded to document the correctness and completeness
of the Anglican implementation while also demonstrat-
ing that the gains illustrated in 1) and 2) do not come
at too great a cost even for simple programs for which,
a priori, PMCMC might be reasonably be expected to
underperform.

In Figures 1a-d there are three panels that report sim-
ilar style findings across test programs and a fourth
that is specific to the individual test program. In all,
PMCMC results are reported for a single-threaded in-
terpreter with 100 particles. The choice of 100 par-
ticles is largely arbitrary; our results are stable for a
large range of values. PMCMC is dark blue while RDB
is light orange. We report the 25% (lower dashed)
median (solid) and 75% (upper dashed) percentiles
over 25 runs with differing random number seeds. We
refer to KL/KL∗/KS as distances and compute each
via a running average of the empirical distribution of
predict statement outputs to ground truth starting at
the first predict output. Note that lower is better.
We define the number of simulations to be the num-
ber of times the program is interpreted in its entirety.
For RDB this means that the number of simulations
is exactly the number of sampler sweeps; for PMCMC
it is the number of particles multiplied by the number
of sampler sweeps. The time horizontal axes report
wall clock time; the apply axes report the number of
function applications performed by the interpreter. In
the distance vs. time plots, observed single-threaded
PMCMC wall-clock times are reported via filled cir-
cles; the left-ward dotted lines illustrate hypothetically
what should be achievable via parallelism. Carefully
note that PMCMC requires completing a number of
simulations equal to the number of particles (here 100)
before emitting batched predict outputs. This means
that single-threaded implementations of PMCMC suf-

fer from latency that RDB does not. Still, for some
programs both the quality of PMCMC’s predict out-
puts and PMCMC’s convergence rate is faster even
in direct wall clock time comparison to RDB. PM-
CMC appears to converge faster for some programs
than RDB even relative to the number of function ap-
plications. Equivalent results were obtained relative
to eval counts.

5.1 HMM

[assume initial-state-dist (list (/ 1 3) (/ 1 3) (/ 1 3))]

[assume get-state-transition-dist (lambda (s)

(cond ((= s 0) (list .1 .5 .4)) ((= s 1) (list .2 .2 .6))

((= s 2) (list .15 .15 .7))))]

[assume transition (lambda (prev-state)

(discrete (get-state-transition-dist prev-state )))]

[assume get-state (mem (lambda (index)

(if (<= index 0) (discrete initial-state-dist)

(transition (get-state (- index 1))))))]

[assume get-state-observation-mean (lambda (s)

(cond ((= s 0) -1) ((= s 1) 1) ((= s 2) 0)))]

[observe (normal (get-state-obs-mean (get-state 1)) 1) .9]

[observe (normal (get-state-obs-mean (get-state 2)) 1) .8]
...
[observe (normal (get-state-obs-mean (get-state 16)) 1) -1]

[predict (get-state 0)]

[predict (get-state 1)]
...
[predict (get-state 16)]
...

The HMM program corresponds to a latent state in-
ference problem in an HMM with three states, one-
dimensional Gaussian observations (.9, .8, .7, 0, -.025,
5, 2, 0.1, 0, .13, .45, 6, .2, .3, -1, -1), with known
mean and variances, a known transition matrix, and
known initial state distribution. The lines of the pro-
gram were organized with the observe’s in “time” se-
quence.

The KL∗ axis reports the sum of the Kulback-Leibler
divergences between the running sample average state
occupancy across all states of a HMM including the
initial state and one trailing predictive state KL∗S =∑

iDKL( 1
S

∑S
s=1 δz(s)

i
||γi). Here δ

z
(s)
i

(k) returns one

if simulation s has latent state z at time step i equal
to k and γi(k) is the true marginal probability of the
latent state indicator zi taking value k at time step
i. The vertical red line in the apply plot indicates the
time and number of applies it takes to run forward-
backward in the Anglican interpreter.

The fourth plot shows the learned posterior distribu-
tion over the latent state value for all time steps in-
cluding both the initial state and a trailing predictive
time step. While RDB produces a reasonable approx-
imation to the true posterior, it does so more slowly
and with greater residual error.
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5.2 DP Mixture

[assume class-generator (crp 1.72)]

[assume class (mem (lambda (n) (class-generator )))]

[assume var (mem (lambda (c) (* 10 (/ 1 (gamma 1 10)))))]

[assume mean (mem (lambda (c) (normal 0 (var c))))]

[assume u (lambda () (list (class 1) (class 2) . . .
(class 9) (class 10)))]

[assume K (lambda () (count (unique (u))))]

[assume means (lambda (i c)

(if (= i c) (list (mean c))

(cons (mean i) (means (+ i 1) c) )))]

[assume stds (lambda (i c)

(if (= i c) (list (sqrt (* 10 (var c))))

(cons (var i) (stds (+ i 1) c) )))]

[observe (normal (mean (class 1)) (var (class 1))) 1.0]

[observe (normal (mean (class 2)) (var (class 2))) 1.1]
...
[observe (normal (mean (class 10)) (var (class 10))) 0]

[predict (u)]

[predict (K)]

[predict (means 1 (K))]

[predict (stds 1 (K))]
...

The DP mixture program corresponds to a clustering
with unknown mean and variance problem modelled
via a Dirichlet process mixture of one-dimensional
Gaussians with unknown mean and variance (normal-
gamma priors). The KL divergence reported is be-
tween the running sample estimate of the distribution
over the number of clusters in the data and the ground
truth distribution over the same. The ground truth
distribution over the number of clusters was computed
for this model and data by exhaustively enumerating
all partitions of the data (1.0, 1.1, 1.2, -10, -15, -20,
.01, .1, .05, 0), analytically computing evidence terms
by exploiting conjugacy, and conditioning on partition
cardinality. The fourth plot shows the posterior distri-
bution over the number of classes in the data computed
by both methods relative to the ground truth.

This program was written in a way that was intention-
ally antagonistic to PMCMC in that the continuous
class likelihood parameters were not marginalized out
and the observe statements were not organized in an
optimal ordering. Despite this, PMCMC outperforms
RDB per simulation, wall clock time, and apply count
as well.

5.3 Branching

[assume fib (lambda (n)

(cond ((= n 0) 1) ((= n 1) 1)

(else (+ (fib (- n 1)) (fib (- n 2))))))]

[assume r (poisson 4)]

[assume l (if (< 4 r) 6 (+ (fib (* 3 r)) (poisson 4)))]

[observe (poisson l) 6]

[predict r]
...

The branching program has no corresponding graph-
ical model. It was designed to test for correctness of
inference in programs with control logic and execu-
tion paths that can vary in the number of random
procedure calls. It also illustrates mixing in a model
where, as shown in the fourth plot, there is a large
mismatch between the prior and the posterior, so re-
jection and importance sampling are likely to be inef-
fective. Because there is only one observation and just

a single named random variable PMCMC and RDB
should and does achieve essentially indistinguishable
performance normalized to simulation, time and ap-
ply count.

5.4 Marsaglia

[assume (marsaglia-normal mean var)

(begin

(define x (uniform-continuous -1.0 1.0))

(define y (uniform-continuous -1.0 1.0))

(define s (+ (* x x) (* y y)))

(if (< s 1)

(+ mean (* (sqrt var)

(* x (sqrt (* -2 (/ (log s) s))))))

(marsaglia-normal mean var )))]

[assume sigma-squared 2]

[assume mu (marsaglia-normal 1 5)]

[observe (normal mu sigma-squared) 9]

[observe (normal mu sigma-squared) 8]

[predict mu]
...

Marsaglia is a test program included here for com-
pleteness. It is an example of a type of program for
which PMCMC sometimes may not be more efficient.
Marsaglia is the name given to the rejection form of the
Box-Muller algorithm [2] for sampling from a Gaus-
sian [6]. The Marsaglia test program corresponds to
an inference problem in which observed quantities are
drawn from a Gaussian with unknown mean and this
unknown mean is generated by an Anglican implemen-
tation of the Marsaglia algorithm for sampling from a
Gaussian. The KS axis is a Kolmogorov-Smirnov test
statistic [5] computed by finding the maximum devia-
tion between the accumulating sample and analytically
derived ground truth cumulative distribution functions
(CDF). Equal-cost PMCMC, RDB, and ground truth
CDFs are shown in the fourth plot.

Because Marsaglia is a recursive rejection sampler it
may require many recursive calls to itself. We conjec-
ture that RDB may be faster than PMCMC here be-
cause, while PMCMC pays no statistical cost, it does
pay a computational cost for exploring program traces
that include many random procedure calls that lead to
rejections whereas RDB, due to the implicit geomet-
ric prior on program trace length, effectively avoids
paying excess computational costs deriving from un-
necessarily long traces.

5.5 Line Permutation

Syntactically and semantically observe and predict’s
are mutually exchangeable (so too are assume’s up to
syntactic constraints). Given this and the nature of
PMCMC it is reasonable to expect that line permu-
tations could effect the efficiency of inference. We ex-
plored this by randomly permuting the lines of the
HMM and DP Mixture programs. The results are
shown in Fig. 2 where blue lines correspond to median
(out of twenty five) runs of PMCMC for each of twenty
five program line permutations (including unmodified
(dark) and reversed (light)) and orange are the same
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(a) HMM (b) DP Mixture

Figure 2: Effect of program line permutations

(a) HMM (b) DP Mixture

Figure 3: Effect of particle count on performance

for RDB. For the HMM we found that the natural,
time-sequence ordering of the lines of the program re-
sulted in the best performance for PMCMC relative
to RDB. This is because in this ordering the observe’s
cause re-weighting to happen as soon as possible in
each SMC phase of PMCMC. The effect of permut-
ing code lines interpolates inference performance be-
tween optimal where PMCMC is best and adversarial
orderings where RDB is instead. RDB performance is
demonstrated here to be independent of the program
line ordering.

The DP Mixture results show PMCMC outperforming
RDB on all program reorderings. Further, it can be
seen that the original program ordering was not opti-
mal with respect to PMCMC inference.

While PMCMC presents the opportunity for signifi-
cant gains in inference efficiency, it does not prevent
programmers from seeking to further optimize perfor-
mance manually. Programmers can influence inference
performance by reordering program lines, in particu-
lar pushing observe statements as near to the front
of the program as syntactically allowed, or restructur-
ing programs to lazily rather than eagerly generate
latent variables. Efficiency gains via automatic trans-
formations or online adaptation of the ordering may
be possible.

5.6 Number of Particles

Fig. 3 shows how varying the number of particles in the
PMCMC inference engine affects performance. Perfor-
mance improves as a function of the number of par-
ticles. In this plot the red line indicates 100 parti-
cles. Increasing from dark to light the number of par-
ticles plotted is 2, 5, 10, 20, 50, (red, 100), 200, and
500.

6 Discussion

The PMCMC approach to probabilistic program in-
terpretation appears to converge faster to the true
conditiona distribution over program execution traces
for programs that correspond to expressive models
with dense conditional dependencies than single-site
Metropolis-Hastings methods. That PMCMC con-
verges faster in our tests even after normalizing for
computational time is, to us, both surprising and strik-
ing. To reiterate, this includes all the computation
done in all the particle executions.

Current versions of Anglican include a multi-threaded
inference core but work remains to achieve optimal
parallelism due, in particular, to memory organiza-
tion sub-optimality leading to excessive locking over-
head. Using just a single thread, PMCMC surprisingly
sometimes outperforms RDB per simulation anyway in
terms of wall clock time.

Our specific choice of syntactically forcing observe’s
to be noisy requires language and interpreter level re-
strictions and checks. Hard constraint observe’s can
be supported in Anglican by exposing a Dirac like-
lihood to programmers. Persisting in not doing so
should help programmers avoid writing probabilistic
programs where finding even a single satisfying exe-
cution trace is NP-hard or not-computable, but also
could be perceived as requiring a non-intuitive pro-
gramming style.

As explored in concurrent work on Venture, there may
be opportunities to improve inference performance by
partitioning program variables, either automatically or
via syntax constructs, and treating them differently
during inference. Then, for instance, some could be
sampled via plain MH, some via conditional SMC. One
simple way to do this would be to combine conditional
SMC and RDB MH.
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