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Abstract
We introduce an approximate search algorithm for fast maxi-
mum a posteriori probability estimation in probabilistic pro-
grams, which we call Bayesian ascent Monte Carlo (BaMC).
Probabilistic programs represent probabilistic models with
varying number of mutually dependent finite, countable, and
continuous random variables. BaMC is an anytime MAP
search algorithm applicable to any combination of random
variables and dependencies. We compare BaMC to other
MAP estimation algorithms and show that BaMC is faster
and more robust on a range of probabilistic models.

Introduction
Many Artificial Intelligence problems, such as approxi-
mate planning in MDP and POMDP, probabilistic abductive
reasoning (Raghavan 2011), or utility-based recommenda-
tion (Shani and Gunawardana 2009), can be formulated as
MAP estimation problems. The framework of probabilistic
inference (Pearl 1988) proposes solutions to a wide range
of Artificial Intelligence problems by representing them as
probabilistic models. Efficient domain-independent algo-
rithms are available for several classes of representations, in
particular for graphical models (Lauritzen 1996), where in-
ference can be performed either exactly and approximately.
However, graphical models typically require that the full
graph of the model to be represented explicitly, and are not
powerful enough for problems where the state space is ex-
ponential in the problem size, such as the generative mod-
els common in planning (Szörényi, Kedenburg, and Munos
2014).

Probabilistic programs (Goodman et al. 2008; Wood,
van de Meent, and Mansinghka 2014) can represent arbitrary
probabilistic models. In addition to expressive power, prob-
abilistic programming separates modeling and inference, al-
lowing the problem to be specified in a simple language
which does not assume any particular inference technique.
Recent success in PMCMC methods enables efficient sam-
pling from posterior distributions with few restrictions on
the structure of the models (Wood, van de Meent, and Mans-
inghka 2014; Paige et al. 2014).

However, an efficient sampling scheme for finding a MAP
estimate would be different from the scheme for inferring
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the posterior distribution: only a single instantiation of
model’s variables, rather than their joint distribution, must
be found. This difference reminds of the difference between
simple and cumulative reward optimization in many settings,
for example, in Multi-armed bandits (Stoltz, Bubeck, and
Munos 2011): when all samples contribute to the total re-
ward, the algorithms are said to optimize the cumulative
reward, which is the classical Multi-armed bandit settings.
Alternatively, when only the quality of the final choice mat-
ters, the algorithms are said to optimize the simple reward.
This setting is often called a search problem. Previous re-
search demonstrated that different sampling schemes work
better for either cumulative or simple reward, and algorithms
which are optimal in one setting can be suboptimal in the
other (Hay et al. 2012).

In this paper, we introduce a sampling-based search al-
gorithm for fast MAP estimation in probabilistic programs,
Bayesian ascent Monte Carlo (BaMC), which can be used
with any combination of finite, countable and continuous
random variables and any dependency structure. We em-
pirically compare BaMC to other feasible MAP estimation
algorithms, showing that BaMC is faster and more robust.

Preliminaries
Probabilistic Programming
Probabilistic programs are regular programs extended by
two constructs (Gordon et al. 2014): a) the ability to draw
random values from probability distributions, and b) the
ability to condition values computed in the programs on
probability distributions. A probabilistic program implic-
itly defines a probability distribution over program state.
Formally, a probabilistic program is a stateful deterministic
computation P with the following properties:

• Initially, P expects no arguments.

• On every invocation, P returns either a distribution F , a
distribution and a value (G, y), a value z, or ?.

• Upon returning F , P expects a value x drawn from F as
the argument to continue.

• Upon returning (G, y) or z, P is invoked again without
arguments.

• Upon returning ?, P terminates.
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A program is run by calling P repeatedly until termina-
tion. Every run of the program implicitly produces a se-
quence of pairs (F

i

, x

i

) of distributions and values drawn
from them. We call this sequence a trace and denote it by x

x

x.
Program output is deterministic given the trace.

By definition, the probability of a trace is proportional to
the product of the probability of all random choices xxx and
the likelihood of all observations yyy:

pP(xxx|yyy) /
|xxx|Y

i=1

p

Fi(xi

)

|yyy|Y

j=1

p

Gj (yj) (1)

The objective of inference in probabilistic program P is to
discover the distribution of program output.

Several implementations of general probabilistic pro-
gramming languages are available (Goodman et al. 2008;
Wood, van de Meent, and Mansinghka 2014). Inference
is usually performed using Monte Carlo sampling algo-
rithms for probabilistic programs (Wingate, Stuhlmüller,
and Goodman 2011; Wood, van de Meent, and Mansinghka
2014; Paige et al. 2014). While some algorithms are better
suited for certain problem types, most can be used with any
valid probabilistic program.

Maximum a Posteriori Probability Inference
Maximum a posteriori probability (MAP) inference is the
problem of finding an assignment to the variables of a prob-
abilistic model that maximizes their joint posterior probabil-
ity (Murphy 2012). Sometimes, a more general problem of
marginal MAP inference estimation is solved, when the dis-
tribution is marginalized over some of the variables (Doucet,
Godsill, and Robert 2002; Mauá and de Campos 2012). In
this paper we consider the simpler setting of MAP estima-
tion, where assignment for all variables is sought, however
the proposed algorithms can be extended to marginal MAP
inference.

For certain graphical models the MAP assignment can be
found exactly (Park and Darwiche 2003; Sun, Druzdzel, and
Yuan 2007). However, in most advanced cases, e.g. mod-
els expressed by probabilistic programs, MAP inference is
intractable, and approximate algorithms such as Stochastic
Expectation-Maximization (Wei and Tanner 1990) or Simu-
lated Annealing (Andrieu and Doucet 2000) are used.

Simulated Annealing (SA) for MAP inference constitutes
a universal approach which is based on Monte Carlo sam-
pling. Simulated Annealing is a non-homogeneous ver-
sion of Metropolis-Hastings algorithm where the acceptance
probability is gradually changed in analogy with the phys-
ical process of annealing (Kirkpatrick, Gelatt, and Vecchi
1983). Convergence of Simulated Annealing algorithms de-
pends on the properties of the annealing schedule — the rate
with which the acceptance probability changes in the course
of the algorithm (Lundy and Mees 1986). When the rate is
too low, the SA algorithm may take too many iterations to
find the global maximum. When the rate is too high, the
algorithm may fail to find the global maximum at all and
get stuck in a local maximum instead. Tuning the anneal-
ing schedule is necessary to achieve reasonable performance

with SA, and the best schedule depends on both the problem
domain and model parameters.

Bayesian Ascent Monte Carlo
We introduce here an approximate search algorithm for fast
MAP estimation in probabilistic programs, Bayesian ascent
Monte Carlo (BaMC). The algorithm draws inspiration from
Monte Carlo Tree Search (Kocsis and Szepesvári 2006). Un-
like Simulated Annealing, BaMC uses the information about
the probability of every sample to propose assignments in
future samples, a kind of adaptive proposal in Monte Carlo
inference. BaMC differs from known realizations of MCTS
in a number of ways.

• The first difference between BaMC and MCTS as com-
monly implemented in online planning or game playing
follows from the nature of inference in probabilistic mod-
els. In online planning and games, the search is performed
with the root of the search corresponding to the current
state of the agent. After a certain number of iterations,
MCTS commits to an action, and restarts the search for
the action to take in the next state. In probabilistic pro-
gram inference assignment to all variables must be deter-
mined simultaneously, hence the sampling is always per-
formed for all variables in the model.

• Additionally, probabilistic programs often involve a com-
bination of finite, infinite countable, and infinite continu-
ous random variables. Variants of MCTS for continuous
variables were developed (Couëtoux et al. 2011), however
mixing variables of different types in the same search is
still an open problem. BaMC uses open randomized prob-
ability matching, also introduced here, to handle all vari-
ables in a unified way independently of variable type.

• Finally, BaMC is an any-time algorithm. Since BaMC
searches for an estimate of the maximum of the posterior
probability, every sample with a greater posterior proba-
bility than that of all previous samples is an improved esti-
mate. BaMC outputs all such samples. As sampling goes
on, the quality of solution improves, however any cur-
rently available solution is a MAP estimate of the model
with increasing quality.

BaMC (Algorithm 1) maintains beliefs about probability
distribution of log weight (the logarithm of unnormalized
probability defined by Equation 1) of the trace for each value
of each random variable in the probabilistic program. At
every iteration (Algorithm 1) the algorithm runs the proba-
bilistic program (lines 4–18) and computes the log weight
of the trace. If the log weight of the trace is greater than
the previous maximum log weight, the maximum log weight
is updated, and the trace is output as a new MAP esti-
mate (lines 19–21). Finally, the beliefs are updated from
the log weight of the sample (lines 22–23).

The ability of BaMC to discover new, improved MAP es-
timates depends on the way values are selected for random
variables (line 7). On one hand, new values should be drawn
to explore the domain of the random variable. On the other
hand, values which were tried previously and resulted in a
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Algorithm 1 Monte Carlo search for MAP assignment.
1: max-log-weight �1
2: loop
3: trace (), log-weight 0
4: result P() /* probabilistic program */
5: loop
6: if result is F

i

then
7: x

i

 SELECTVALUE(i, F
i

)
8: log-weight log-weight + log p

Fi(xi

)

9: log-weight
i

 log-weight
10: PUSH(trace,(F

i

, x
i

))
11: result P(x

i

)
12: else if result is (G

j

, y

j

) then
13: log-weight log-weight + log p

Gj (yj)

14: result P()
15: else if result is z

k

then
16: OUTPUT(z

k

)
17: result P()
18: else break
19: if log-weight > max-log-weight then
20: OUTPUT(trace)
21: max-log-weight log-weight
22: for i in |trace| downto 1 do
23: UPDATE(i, log-weight - log-weight

i

)

high-probability trace should be re-selected sufficiently of-
ten to discover high-probability assignments conditioned on
these values.

Open Randomized Probability Matching
Randomized probability matching (RPM), also called
Thompson sampling (Thompson 1933), is used in many con-
texts where choices are made based on empirically deter-
mined choice rewards. It is a selection scheme that main-
tains beliefs about reward distributions of every choice, se-
lects a choice with the probability that the average reward
of the choice is the highest one, and revises beliefs based on
observed rewards. Bayesian belief revision is usually used
with randomized probability matching. Selection can be im-
plemented efficiently by drawing a single sample from the
belief distribution of average belief for every choice, and se-
lecting the choice with the highest sample value (Scott 2010;
Agrawal and Goyal 2012).

Here we extend randomized probability matching to do-
mains of infinite or unknown size. We call this generalized
version open randomized probability matching (ORPM)
(Algorithm 2). ORPM is given a choice distribution, and
selects choices from the distribution to maximize the to-
tal reward. ORPM does not know or assume the type of
the choice distribution, but rather handles all distribution
types in a unified way. Like RPM, ORPM maintains be-
liefs about the rewards of every choice. First, ORPM uses
RPM to guess the reward distribution of a randomly drawn
choice (lines 6–12). Then, ORPM uses RPM again to select
a choice based on the beliefs of each choices, including a
randomly drawn choice (lines 4–23). If the selected choice
is a randomly drawn choice, the choice is drawn from the

choice distribution (line 21) and added to the set of choices.
Finally, an action is executed based on the choice (line 25)
and the reward belief of the choice is updated based on the
reward updated from the action.

The final form of Bayesian Ascent Monte Carlo is ob-
tained by combining Monte Carlo search for MAP assign-
ment (Algorithm 1) and open randomized probability match-
ing (Algorithm 2). Selecting a value in line 7 corresponds to
lines 4–23 of Algorithm 2. Line 27 of Algorithm 2 is per-
formed at every iteration of the loop in lines 22–23 of Algo-
rithm 1. The reliance on randomized probability matching
allows to implement BaMC efficiently without any tunable
parameters.

Belief Maintenance

In probabilistic models with continuous random choices
log pP(x|yx|y

x|y) (Equation 1) may be both positive and nega-
tive, and is in general unbounded on either side, therefore we
opted for the normal distribution to represent beliefs about
choice rewards. Since parameters of reward distributions
vary in wide bounds, and reasonable initial estimates are
hard to guess, we used an uninformative prior belief, which
is in practice equivalent to maintaining sample mean and
variance estimates for each choice, and using the estimates
as the parameters of the belief distribution. Let us denote by
r

ij

a random variable corresponding to the reward attributed
to random choice j at selection point i. Then the reward

Algorithm 2 Open randomized probability matching.
1: choices ()
2: loop
3: /* x

i

 SELECTVALUE(i, F
i

) */
4: if choices = () then best-choice random-choice
5: else
6: best-reward �1
7: best-belief ?
8: for choice in choices do
9: reward DRAW(RewardBelief(choice))

10: if reward � best-reward then
11: best-reward reward
12: best-belief MeanRewardBelief(choice)
13: best-reward DRAW(best-belief)
14: best-choice random-choice
15: for choice in choices do
16: reward DRAW(MeanRewardBelief(choice))
17: if reward � best-reward then
18: best-reward reward
19: best-choice choice
20: if best-choice = random-choice then
21: best-choice DRAW(ChoiceDistribution)
22: RewardBelief(best-choice) PriorBelief
23: choices APPEND(choices,best-choice)
24: /* result P() */
25: reward EXECUTE(best-choice)
26: /* UPDATE(i, log-weight - log-weight

i

) */
27: UPDATEREWARDBELIEF(best-choice,reward)
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Figure 1: HMM with 16 observed states and unknown tran-
sition probabilities.
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Figure 2: Probabilistic Deterministic Infinite Automata on
the first chapter of Alice’s Adventures in Wonderland.

belief distribution is

r

ij

⇠ Bel(r

ij

) , N (E(r

ij

),Var(r

ij

)), (2)

where E(r

ij

) and Var(r

ij

) are the sample mean and vari-
ance of the reward, correspondingly.

In the same uninformative prior setting, the mean reward
belief rmean

ij

, used by randomized probability matching, is

r

mean

ij

⇠ Bel(r

mean

ij

) , N
✓
E(r

ij

),

Var(r

ij

)

n

◆
(3)

where n is the sample size of r
ij

(Gelman et al. 2003).
These beliefs can be computed efficiently, and provide

sufficient information to guide MAP search. Informative
priors on reward distributions can be imposed to improve
convergence when available, such as in the approach de-
scribed in (Bai, Wu, and Chen 2013).

Empirical Evaluation
We present here empirical results for MAP estimation on
two problems, Hidden Markov Model with 16 observable
states and unknown transition probabilities (Figures 1, 3)
and Probabilistic Infinite Deterministic Automata (Pfau,
Bartlett, and Wood 2010), applied to the first chapter of
“Alice’s Adventures in Wonderland” as the training data.
Both represent, for purposes of MAP estimation, probabilis-
tic models of reasonable size, with a mix of discrete and
continuous random variables.

For both problems, we compared BaMC, Simulated An-
nealing with exponential schedule and the schedule used
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Figure 3: A single run of BaMC on HMM.

in (Lundy and Mees 1986) which we customarily call
Lundy-Mees schedule, as well a lightweight implementation
of Metropolis-Hastings (Wingate, Stuhlmüller, and Good-
man 2011) adapted for MAP search, as a base line for the
comparison. In Figures 1, 2 the solid lines correspond to the
medians, and the dashed lines to the 25% and 75% quantiles
of MAP estimates produced by each of the algorithms over
50 runs for 4000 iterations. For each annealing schedule of
SA we kept only lines corresponding to the empirically best
annealing rate (choosing the rate out of the list 0.8, 0.85,
0.9, 0.95). In both case studies, BaMC consistently out-
performed other algorithms, finding high probability MAP
estimates faster and with less variability between runs.

In addition, Figure 3 visualizes a single run of BaMC on
HMM. The solid black line shows the produced MAP esti-
mates, the light-blue lines are weights of individual samples,
and the bright blue line is the smoothed median of individ-
ual sample weights. One can see that the smoothed median
approaches the MAP estimate as the sampling goes on, re-
flecting the fact the BaMC samples gradually converge to a
small set of high probability assignments.

Discussion
In this paper, we introduced BaMC, a search algorithm for
fast MAP estimation. The algorithm is based on MCTS but
differs in a number of important ways. In particular, the
algorithm can search for MAP in models with any combina-
tion of variable types, and does not have any parameters that
has to be tuned for a particular problem domain or configu-
ration. As a part of BaMC we introduced open randomized
probability matching, an extension of randomized probabil-
ity matching to arbitrary variable types.

BaMC is simple and straightforward to implement both
for MAP estimation in probabilistic programs, and for
stochastic optimization in general. Empirical evaluation
showed that BaMC outperforms Simulated Annealing de-
spite the ability to tune the annealing schedule and rate in
the latter. BaMC coped well with cases of both finite and
infinite continuous variables present in the same problem.

Full analysis of algorithm properties and convergence is
still a subject of ongoing work. Conditions under which
BaMC converges, as well as the convergence rate, in par-
ticular in the continuous case, still need to be established,
and may shed light on the boundaries of applicability of the
algorithm. On the other hand, techniques used in BaMC, in
particular open randomized probability matching, span be-
yond MAP estimation and stochastic optimization, and may
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constitute a base for a more powerful search approach in
continuous and mixed spaces in general.
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